CpxRA contributes to Xenorhabdus nematophila virulence through regulation of lrhA and modulation of insect immunity.

نویسندگان

  • Erin E Herbert Tran
  • Heidi Goodrich-Blair
چکیده

The gammaproteobacterium Xenorhabdus nematophila is a blood pathogen of insects that requires the CpxRA signal transduction system for full virulence (E. E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). We show here that the DeltacpxR1 mutant has altered localization, growth, and immune suppressive activities relative to its wild-type parent during infection of Manduca sexta insects. In contrast to wild-type X. nematophila, which were recovered throughout infection, DeltacpxR1 cells did not accumulate in hemolymph until after insect death. In vivo imaging of fluorescently labeled bacteria within live insects showed that DeltacpxR1 displayed delayed accumulation and also occasionally were present in isolated nodes rather than systemically throughout the insect as was wild-type X. nematophila. In addition, in contrast to its wild-type parent, the DeltacpxR1 mutant elicited transcription of an insect antimicrobial peptide, cecropin. Relative to phosphate-buffered saline-injected insects, cecropin transcript was induced 21-fold more in insects injected with DeltacpxR1 and 2-fold more in insects injected with wild-type X. nematophila. These data suggest that the DeltacpxR1 mutant has a defect in immune suppression or has an increased propensity to activate M. sexta immunity. CpxR regulates, directly or indirectly, genes known or predicted to be involved in virulence (E. E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007), including lrhA, encoding a transcription factor necessary for X. nematophila virulence, motility, and lipase production (G. R. Richards et al., J. Bacteriol. 190:4870-4879, 2008). CpxR positively regulates lrhA transcript, and we have shown that altered regulation of lrhA in the DeltacpxR1 mutant causes this strain's virulence defect. The DeltacpxR1 mutant expressing lrhA from a constitutive lac promoter showed wild-type virulence in M. sexta. These data suggest that CpxR contributes to X. nematophila virulence through the regulation of lrhA, immune suppression, and growth in Insecta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenorhabdus nematophila lrhA is necessary for motility, lipase activity, toxin expression, and virulence in Manduca sexta insects.

The gram-negative insect pathogen Xenorhabdus nematophila possesses potential virulence factors including an assortment of toxins, degradative enzymes, and regulators of these compounds. Here, we describe the lysR-like homolog A (lrhA) gene, a gene required by X. nematophila for full virulence in Manduca sexta insects. In several other gram-negative bacteria, LrhA homologs are transcriptional r...

متن کامل

Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production.

Xenorhabdus nematophila is a gammaproteobacterium and broad-host-range insect pathogen. It is also a symbiont of Steinernema carpocapsae, the nematode vector that transports the bacterium between insect hosts. X. nematophila produces several secreted enzymes, including hemolysins, lipases, and proteases, which are thought to contribute to virulence or nutrient acquisition for the bacterium and ...

متن کامل

CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.

The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host...

متن کامل

The entomopathogenic bacterium, Xenorhabdus nematophila, impairs hemocytic immunity by inhibition of eicosanoid biosynthesis in adult crickets, Gryllus Wrmus

The bacterium, Xenorhabdus nematophila (Poinar and Thomas), is an obligate symbiont of nematodes in the genus Steinernema and a lethal insect pathogen. We investigated the hypothesis that one aspect of the bacterial virulence is the ability of X. nematophila to severely impair host insect cellular immune reactions to infection by inhibiting eicosanoid biosynthesis in the adult male cricket, Gry...

متن کامل

Analysis of the PixA inclusion body protein of Xenorhabdus nematophila.

The symbiotic pathogenic bacterium Xenorhabdus nematophila produces two distinct intracellular inclusion bodies. The pixA gene, which encodes the 185-residue methionine-rich PixA inclusion body protein, was analyzed in the present study. The pixA gene was optimally expressed under stationary-phase conditions but its expression did not require RpoS. Analysis of a pixA mutant strain showed that P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 12  شماره 

صفحات  -

تاریخ انتشار 2009